সরলরেখা সম্পর্কিত প্রয়োজনীয় সূত্র ♦
1. A (x1,y1) ও B (x2,y2) বিন্দুগামী সরলরেখার ঢাল(gradient) ,
2. ax+by+c=0 সরলরেখার ঢাল, m = -(a/b)
3. A (x1, y1), B (x2, y2) এবং C (x3, y3) বিন্দু তিনটি সমরেখ হবে যদি AB এবং AC রেখাদ্বয়ের ঢাল একই হয় ।
অর্থাৎ যদি,(y1-y2)/(x1-x2)=(y1-y3)/
(x1-x3) হয়
4. x অক্ষের সমীকরণ, y = 0
5. y অক্ষের সমীকরণ, x = 0
6. x অক্ষের সমান্তরাল সরলরেখার সমীকরণ, y = b
7. y অক্ষের সমান্তরাল সরলরেখার সমীকরণ, x = a
8. y অক্ষ থেকে নিদিষ্ট অংশ c ছেদ করে এবং x অক্ষের সাথে ধনাত্মক কোণ θ উৎপন্ন করে এরূপ সরলরেখার সমীকরণ, y = mx+c
এখানে, m = সরলরেখার ঢাল = tanθ
c = 0 হলে সরলরেখাটি মূলবিন্দুগামী হয় এবং সমীকরণটি দাড়ায়, y = mx
9.(x1,y1) বিন্দুগামী m ঢাল বিশিষ্ট সরলরেখার সমীকরণ
y-y1 = m(x-x1)
10.(x1, y1) ও (x2,y2) বিন্দুগামী এবং y অক্ষের সমান্তরাল নয় এরূপ রেখার সমীকরণ , (x-x1)/(x1-x2)=(y-y1)/(y1-y2)
11.মূলবিন্দু (0,0) এবং (x1,y1) বিন্দুর সংযোগকারী সরলরেখার সমীকরণ,
(x/x1) = (y/y1)
12.x অক্ষ থেকে নির্দিষ্ট অংশ a এবং y অক্ষ থেকে নির্দিষ্ট অংশ b ছেদ করে এরূপ সরলরেখার সমীকরণ, x/a + y/b = 1
সরলরেখাটি x অক্ষরেখাকে (a,0) এবং y অক্ষরেখাকে (0,b) বিন্দুতে ছেদ করে
13.মূলবিন্দু থেকে যে সরলরেখার উপর অঙ্কিত লম্ব x অক্ষের ধনাত্মক দিকের সাথে Θ কোণ উৎপন্ন করে এবং যার উপর মূলবিন্দু থেকে অঙ্কিত লম্বের দৈর্ঘ্য p তার সমীকরণ, x cosθ + ysinθ= p
14.দুইটি সরলরেখার সমীকরণ সমাধান করলে তাদের ছেদবিন্দুর স্থানাঙ্ক পাওয়া যায় ।
15.a1x+b1y+c1 = 0 এবং a2x+b2y+c2 = 0 সরলরেখাদ্বয়ের ছেদবিন্দুগামী সরলরেখার সমীকরণ,
a1x+b1y+c1+k(a2x+b2y+c2) = 0
k-এর বিভিন্ন মানের জন্য সমীকরণটি বিভিন্ন সরলরেখা প্রকাশ করে যার প্রত্যেকেই উক্ত ছেদ বিন্দুগামী ।
16. (x1, y1) ও (x2,y2) বিন্দুদ্বয় ax+by+c = 0 রেখার একই পার্শ্বে অবস্থিত হবে যদি a1x+b1y+c এবং a2x+b2y+c রাশিদ্বয় একই চিহ্নবিশিষ্ট হয় ।
17. (x1, y1) ও (x2,y2) বিন্দুদ্বয় ax+by+c = 0 রেখার বিপরীত পার্শ্বে অবস্থিত হবে যদি a1x+b1y+c এবং a2x+b2y+c রাশিদ্বয় বিপরীত চিহ্ন বিশিষ্ট হয় ।